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Abstract. We are interested in the deterministic computation of the transients for the Boltzmann-Poisson system describing
electron transport in semiconductor devices. The main difficulty of such computation arises from the very high dimensions
of the model, making it necessary to use relatively coarse meshes and hence requiring the numerical solver to be stable and
to have good resolution under coarse meshes. In this paper we consider the discontinuous Galerkin (DG) method, which
is a finite element method using discontinuous piecewise polynomials as basis functions and numerical fluxes based on
upwinding for stability, for solving the Boltzmann-Poisson system. In many situations, the deterministic DG solver can
produce accurate solutions with equal or less CPU time than the traditional DSMC (Direct Simulation Monte Carlo) solvers.
Numerical simulation results on a diode and a 2D double-gate MOSFET are given.
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INTRODUCTION

In modern semiconductor device simulations, the classical macroscopic models, such as drift diffusion, energy
transport models, are not adequate to capture the subtle kinetic effects that happen in nano-scales. The semiclassical
Boltzmann transport equation (BTE) coupled with the Poisson equation serves as a general theoretical framework for
modeling carrier transports for sub-micron devices. The BTE has a hyperbolic component of transport and a dissipative
mechanism due to the collision operator. Its solutions are positive probability distributions. To solve this system by
deterministic numerical schemes is very costly, because the full Boltzmann equation is an integro-differential equation
of very high dimensions (3D is space and 3D in phase plus time for real devices). This heavy computational cost
explains why the BP system is traditionally simulated by the Direct Simulation Monte Carlo (DSMC) methods. DSMC
methods have the advantage that the increase in computational cost is not significant with the increase of dimensions.
However, the simulation results are often noisy, and it is difficult to compute transient details (time dependent states),
especially if the probability density function (pdf ) is desired. In recent years, deterministic solvers to the BP system
were considered in the literature, see for example [1, 2, 3, 4]. These methods provide accurate results which, in general,
agree well with those obtained from DSMC simulations, sometimes at a comparable or even less computational time.
Deterministic solvers have the distinct advantage in resolving transient details for the pdf. However, the main difficulty
of the deterministic solvers arises from the very high dimensions of the model, making it necessary to use relatively
coarse meshes and hence requiring the numerical solver to be stable and to have good resolution under coarse meshes.
This can be challenging because under coarse meshes, for a convection dominated problem, the solution may contain
high gradient (relative to the mesh) regions, which may lead to instability if care is not taken in the design of the
algorithm. One class of very successful numerical solvers for the deterministic solvers of the BP system is the weighted
essentially non-oscillatory (WENO) finite difference scheme [3, 4]. The advantage of the WENO scheme is that it
is relatively simple to code and very stable even on coarse meshes for solutions containing sharp gradient regions.
However, the WENO finite difference method requires smooth meshes to achieve high order accuracy, hence it is not
very flexible for adaptive meshes.

On the other hand, the Runge-Kutta discontinuous Galerkin (RKDG) method, which is a class of finite element
methods originally devised to solve hyperbolic conservation laws (see [5] for a review), is a suitable alternative for
solving the BP system. Using a completely discontinuous polynomial space for both the test and trial functions in
the spatial variables and coupled with explicit and nonlinearly stable high order Runge-Kutta time discretization, the



method has the advantage of flexibility for arbitrarily unstructured meshes, with a compact stencil, and with the ability
to easily accommodate arbitrary hp-adaptivity. In recent years, we have initialized a line of research to develop and
implement the RKDG method, coupled with the local DG (LDG) solution for the Poisson equation, for solving the
full BP system, see [7, 8, 9, 10]. It is demonstrated through extensive numerical studies that the DG solver produces
good resolution on relatively coarse meshes for the transient and steady state pdf, as well as various orders of moments
and the current-voltage characteristics (I-V curves), which compare well with DSMC results. Our DG solver has the
capability of handling full energy bands [9] that no other deterministic solver has been able to implement so far.

THE BOLTZMANN-POISSON SYSTEM

The evolution of the electron distribution function f (t,x,k) in semiconductors, depending on the time t, position x and
electron wave vector k, is governed by the following BTE,

∂ f
∂ t

+
1
h̄

∇k ε ·∇x f − q
h̄

E ·∇k f = Q( f ) , (1)

where h̄ is the reduced Planck constant, and q denotes the positive elementary charge. The function ε(k) is the energy of
the considered crystal conduction band measured from the band minimum; according to the Kane dispersion relation,
ε is the positive root of

ε(1+αε) =
h̄2k2

2m∗ , (2)

where α is the non-parabolicity factor and m∗ the effective electron mass. The electric field E is related to the doping
density ND and the electron density n, which equals the zero-order moment of the electron distribution function f , by
the Poisson equation

∇x [εr(x)∇xV ] =
q
ε0

[n(t,x)−ND(x)] , E =−∇xV , (3)

where ε0 is the dielectric constant of the vacuum, εr(x) labels the relative dielectric function depending on the
semiconductor and V is the electrostatic potential. For low electron densities, the collision operator Q( f ) is

Q( f )(t,x,k) =
∫
R3

[
S(k′,k) f (t,x,k′)−S(k,k′) f (t,x,k)

]
dk′, (4)

where S(k′,k) is the kernel depending on the scattering mechanisms between electrons and phonons in the semicon-
ductor.

For the numerical treatment of the BP system, it is convenient to introduce suitable dimensionless quantities and
variables. We assume TL = 300K. Typical values for length, time and voltage are ℓ∗ = 10−6 m, t∗ = 10−12 s and
V∗ = 1Volt, respectively. If we consider a two-dimensional device and three-dimensional k space, the dimensionless
variables are

(x,y) =
x
ℓ∗

, t =
t
t∗
, Ψ =

V
V∗

, (Ex,Ey,0) =
E
E∗

with E∗ = 0.1V∗ ℓ
−1
∗ and

Ex =−cv
∂Ψ
∂x

, Ey =−cv
∂Ψ
∂y

, cv =
V∗
ℓ∗E∗

.

In correspondence to [2, 3], we perform a coordinate transformation for k according to

k =

√
2m∗kBTL

h̄

√
w(1+αKw)

(
µ ,

√
1−µ2 cosφ,

√
1−µ2 sinφ

)
, (5)

where the new independent variables are the dimensionless energy w =
ε

kBTL
, the cosine of the polar angle µ and the

azimuth angle φ with αK = kBTLα . The distribution function under the transformation becomes

Φ(t,x,y,w,µ ,φ) = s(w) f (t,x,k) ,



where
s(w) =

√
w(1+αKw)(1+2αKw), (6)

is proportional to the Jacobian of the change of variables (5) and, apart from a dimensional constant factor, to the
density of states. The BTE becomes now,

∂Φ
∂ t

+
∂
∂x

(g1Φ)+
∂
∂y

(g2Φ)+
∂

∂w
(g3Φ)+

∂
∂ µ

(g4Φ)+
∂

∂φ
(g5Φ) =C(Φ) . (7)

The functions gi (i = 1,2, ..,5) in the advection terms depend on the independent variables w, µ , φ as well as on time
and position via the electric field. They are given by

g1(·) = cx
µ
√

w(1+αKw)
1+2αKw

,

g2(·) = cx

√
1−µ2

√
w(1+αKw)cosφ

1+2αKw
,

g3(·) = −2ck

√
w(1+αKw)
1+2αKw

[
µ Ex(t,x,y)+

√
1−µ2 cosφ Ey(t,x,y)

]
,

g4(·) = − ck

√
1−µ2√

w(1+αKw)

[√
1−µ2 Ex(t,x,y)−µ cosφ Ey(t,x,y)

]
,

g5(·) = ck
sinφ√

w(1+αKw)
√

1−µ2
Ey(t,x,y)

with

cx =
t∗
ℓ∗

√
2kBTL

m∗ and ck =
t∗qE∗√
2m∗kBTL

.

The right hand side of (7) is the integral-difference operator

C(Φ)(t,x,y,w,µ,φ) = s(w)
{∫ π

0
dφ ′

∫ 1

−1
dµ ′ [c+Φ(t,x,y,w+ γ,µ ′,φ ′)+ c−Φ(t,x,y,w− γ,µ ′,φ ′)]

+ c0

∫ π

0
dφ ′

∫ 1

−1
dµ ′ Φ(t,x,y,w,µ ′,φ ′)

}
−2π[c0s(w)+ c+s(w− γ)+ c−s(w+ γ)]Φ(t,x,y,w,µ ,φ) ,

where
(c0,c+,c−) =

2m∗ t∗
h̄3

√
2m∗ kBTL (K0,(nq +1)K,nqK) , γ =

h̄ωp

kBTL

are dimensionless parameters. The phonon frequency ωp and the physical parameters K and K0 depend on the
semiconductor material. The electron density becomes

n(t∗t, ℓ∗x, ℓ∗y) =
∫
R3

f (t∗t, ℓ∗x, ℓ∗y,k)dk =

(√
2m∗kBTL

h̄

)3

ρ(t,x,y) ,

where

ρ(t,x,y) =
∫ +∞

0
dw

∫ 1

−1
dµ

∫ π

0
dφ Φ(t,x,y,w,µ,φ) . (8)

Hence, the dimensionless Poisson equation is

∂
∂x

(
εr

∂Ψ
∂x

)
+

∂
∂y

(
εr

∂Ψ
∂y

)
= cp [ρ(t,x,y)−ND(x,y)] (9)

with

ND(x,y) =
(√

2m∗kBTL

h̄

)−3

ND(ℓ∗x, ℓ∗y) and cp =

(√
2m∗kBTL

h̄

)3
ℓ2
∗q
ε0

.



THE DG SOLVER

For simplicity of discussion, we implement our algorithm on a cartesian grid, although the DG methods work
well on unstructured meshes as well. Suppose the grid is Ωi jkmn =

[
xi− 1

2
, xi+ 1

2

]
×
[
y j− 1

2
, y j+ 1

2

]
×
[
wk− 1

2
, wk+ 1

2

]
×[

µm− 1
2
, µm+ 1

2

]
×
[
φn− 1

2
, φn+ 1

2

]
where i = 1, . . .Nx, j = 1, . . .Ny, k = 1, . . .Nw, m = 1, . . .Nµ , n = 1, . . .Nφ , and

xi± 1
2
= xi± ∆xi

2 , y j± 1
2
= y j ±

∆y j
2 , wk± 1

2
= wk ± ∆wk

2 µm± 1
2
= µm± ∆µm

2 , φn± 1
2
= φn± ∆φn

2 . The approximation
functional space is defined as

V ℓ
h = {v : v|Ωi jkmn ∈ Pℓ(Ωi jkmn)}. (10)

Here, Pℓ(Ωi jkmn) is the set of all polynomials of degree at most ℓ on Ωi jkmn. The DG formulation for the Boltzmann
equation (7) would be: to find Φh ∈V ℓ

h , such that∫
Ωi jkmn

(Φh)t vh dΩ−
∫

Ωi jkmn

g1Φh (vh)x dΩ−
∫

Ωi jkmn

g2Φh (vh)y dΩ−
∫

Ωi jkmn

g3Φh (vh)w dΩ−
∫

Ωi jkmn

g4Φh (vh)µ dΩ

−
∫

Ωi jkmn

g5Φh (vh)φ dΩ+F+
x −F−

x +F+
y −F−

y +F+
w −F−

w +F+
µ −F−

µ +F+
φ −F−

φ =
∫

Ωi jkmn

C(Φh)vh dΩ. (11)

for any test function vh ∈V ℓ
h . In (11),

F±
x =

∫ y
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2
y
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2

∫ w
k+ 1

2
w

k− 1
2

∫ µ
m+ 1

2
µ

m− 1
2

∫ φ
n+ 1

2
φ

n− 1
2

g1 Φ̌v∓h (xi± 1
2
,y,w,µ ,φ)dydwdµ dφ ,

F±
y =

∫ x
i+ 1

2
x

i− 1
2

∫ w
k+ 1

2
w

k− 1
2

∫ µ
m+ 1

2
µ

m− 1
2

∫ φ
n+ 1

2
φ

n− 1
2

g2 Φ̄v∓h (x,y j± 1
2
,w,µ ,φ)dxdwdµ dφ ,

F±
w =

∫ x
i+ 1

2
x

i− 1
2

∫ y
j+ 1

2
y

j− 1
2

∫ µ
m+ 1

2
µ

m− 1
2

∫ φ
n+ 1

2
φ

n− 1
2

ĝ3 Φv∓h (x,y,wk± 1
2
,µ,φ)dxdydµ dφ,

F±
µ =

∫ x
i+ 1

2
x

i− 1
2

∫ y
j+ 1

2
y

j− 1
2

∫ w
k+ 1

2
w

k− 1
2

∫ φ
n+ 1

2
φ

n− 1
2

g̃4 Φv∓h (x,y,w,µm± 1
2
,φ)dxdydwdφ,

F±
φ =

∫ x
i+ 1

2
x

i− 1
2

∫ y
j+ 1

2
y

j− 1
2

∫ w
k+ 1

2
w

k− 1
2

∫ µ
m+ 1

2
µ

m− 1
2

g5 Φ̇v∓h (x,y,w,µ,φn± 1
2
)dxdydwdµ ,

where Φ̌,Φ̄, ĝ3 Φ, g̃4 Φ,Φ̇ are the upwind numerical fluxes. The Poisson equation is solved by the local DG methods
[11] with suitable boundary conditions. We refer further details of the schemes to [8].

NUMERICAL RESULTS

Here we show the simulation results for a double gate MOSFET device as in Figure 1. The top and bottom shadowed
region denotes the oxide-silicon region, whereas the rest is the silicon region. The relative dielectric constant in the
oxide-silicon region is εr = 3.9, in the silicon region is εr = 11.7. We will only need to compute for y > 0 because
of the symmetry of the problem. The electric potential is Ψ = 0V at source, Ψ = 2V at drain and Ψ = 0.5V at gate.
The boundary conditions for source and drain contacts as proposed in [4] have been implemented. For the interface of
silicon and oxide-silicon region, we use simple specular reflection. The doping profile has been specified as follows:
ND(x,y) = 1017cm−3 if x < 50nm or x > 100nm, ND(x,y) = 5×1014cm−3 in the channel 50nm ≤ x ≤ 100nm. We use
a very coarse mesh, 24×12 grid in space, 100 points in w, 8 points in µ and 6 points in φ in our calculation. In Figure
2, we show macroscopic quantities for this device during the transient.
We consider also a 1D device of length 250nm. The electric potential is Ψ = 0V at source and Ψ = 1V at drain and
the doping profile is ND(x) = 5× 1018cm−3 if x < 100nm or x > 150nm and ND(x) = 1015cm−3 in the channel. The
results are compared with DSMC data. Figure 3 show hydrodynamical variables and Fig. 4 the pdf near the second
junction. All numerical results are obtained with piecewise linear polynomials and second order TVD Runge-Kutta
time stepping.



��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������

��������������������������������������������
��������������������������������������������
��������������������������������������������
������������������������������������������������������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

150nm

2nm

x

top gate

bottom gate

y 50nm 50nm

2
4
n
m

dr
ai

n

source

FIGURE 1. Schematic representation of a 2D double gate MOSFET device.
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FIGURE 2. 2D double gate MOSFET at t = 0.8ps. Density in cm−3 and the modulus of the velocity in cm/s.
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EXTENSIONS AND FURTHER CONSIDERATIONS

It is well known that the transport Boltzmann equation associated with the BP system conserves mass, and the
initial value problem propagates positivity. In particular, it is essential that the numerical schemes preserve these
physical properties of the system. We can see easily that the DG scheme conserves mass in semi-discrete sense by
plugging in the test function to be vh = 1. From a simple argument [10, 12] follows that if the electric field stays
under control, then a first order DG scheme will be monotone, hence preserves positivity. In addition, a high order
accurate, positivity-preserving DG scheme for the Vlasov-Boltzmann transport equation was developed in [12], using
a maximum-principle satisfying limiter technique for conservation laws [13]. In future work, we will explore this
scheme in the setting of BP systems in the context of semiconductor device simulations.

Another important factor of the BP system is the band structure. The aforementioned system uses analytical band
models, which means the energy band function ε(k) has been given explicitly. The analytical band makes use of the
explicit dependence of the carrier energy on the quasimomentum, which significantly simplifies all expressions as
well as implementation of these techniques. However, the physical details of the band structure, when hot carriers in
high-field phenomena are considered, are partly or totally ignored.

Full band models [14], on the other hand, can guarantee accurate physical pictures of the energy-band function. They
are widely used in DSMC simulators, but only recently the Boltzmann transport equation was considered [15, 16],
where approximate solutions were found by means of spherical harmonics expansion of the distribution function f .
Since only a few terms of the expansion are usually employed, high order accuracy is not always achieved [17].
Recently in [9], the authors developed a DG code, which is the first deterministic code that can compute the full band
model directly. The energy band is treated as a numerical input that can be obtained either by experimental data or the
empirical pseudopotential method. The Dirac delta functions in the scattering kernels can be computed directly, based
on the weak formulations of the PDE. The results in [9] for 1D devices have demonstrated the importance of using full
band model when accurate description of macroscopic quantities under large applied bias is desired.
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